RDD

RDD是基本内存计算的单元 RDD最重要的方法是compute和partitions方法

前者决定了当前这个partition里的数据根据什么函数计算得来,后者决定了数据的分布,也就是一个RDD的数据分成若干Partition然后进行计算

dependencies方法则把每一个计算后的RDD串联起来

RDD.scala

/**
   * Internal method to this RDD; will read from cache if applicable, or otherwise compute it.
   * This should ''not'' be called by users directly, but is available for implementors of custom
   * subclasses of RDD.
   */
  final def iterator(split: Partition, context: TaskContext): Iterator[T] = {
    if (storageLevel != StorageLevel.NONE) {
      SparkEnv.get.cacheManager.getOrCompute(this, split, context, storageLevel)
    } else {
      computeOrReadCheckpoint(split, context)
    }
  }

FilteredRDD.scala

override def compute(split: Partition, context: TaskContext) =
    firstParent[T].iterator(split, context).filter(f)

iteratorcompute里调用

RDD.scala 里compute定义

/**
   * :: DeveloperApi ::
   * Implemented by subclasses to compute a given partition.
   */
  @DeveloperApi
  def compute(split: Partition, context: TaskContext): Iterator[T]

CacheManager.scala

/** Gets or computes an RDD partition. Used by RDD.iterator() when an RDD is cached. */
  def getOrCompute[T](
      rdd: RDD[T],
      partition: Partition,
      context: TaskContext,
      storageLevel: StorageLevel): Iterator[T] = {

    val key = RDDBlockId(rdd.id, partition.index)
    logDebug(s"Looking for partition $key")
    blockManager.get(key) match {
      case Some(blockResult) =>
        // Partition is already materialized, so just return its values
        new InterruptibleIterator(context, blockResult.data.asInstanceOf[Iterator[T]])

      case None =>
        // Acquire a lock for loading this partition
        // If another thread already holds the lock, wait for it to finish return its results
        val storedValues = acquireLockForPartition[T](key)
        if (storedValues.isDefined) {
          return new InterruptibleIterator[T](context, storedValues.get)
        }

        // Otherwise, we have to load the partition ourselves
        try {
          logInfo(s"Partition $key not found, computing it")
          val computedValues = rdd.computeOrReadCheckpoint(partition, context)


          // Otherwise, cache the values and keep track of any updates in block statuses
          val updatedBlocks = new ArrayBuffer[(BlockId, BlockStatus)]
          val cachedValues = putInBlockManager(key, computedValues, storageLevel, updatedBlocks)

          new InterruptibleIterator(context, cachedValues)

        } finally {
          loading.synchronized {
            loading.remove(key)
            loading.notifyAll()
          }
        }
    }
  }

rdd.computeOrReadCheckpoint()通过算, 再通过putInBlockManager

RDD上的action方法会导致DAGScheduler上的runJob运行

def runJob[T, U: ClassTag](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      callSite: CallSite,
      allowLocal: Boolean,
      resultHandler: (Int, U) => Unit,
      properties: Properties = null)
  {
    val start = System.nanoTime
    val waiter = submitJob(rdd, func, partitions, callSite, allowLocal, resultHandler, properties)
    waiter.awaitResult() match {
      case JobSucceeded => {
        logInfo("Job %d finished: %s, took %f s".format
          (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
      }
      case JobFailed(exception: Exception) =>
        logInfo("Job %d failed: %s, took %f s".format
          (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
        throw exception
    }
  }

Executor.scala

override def run() {
    task = ser.deserialize[Task[Any]](taskBytes, Thread.currentThread.getContextClassLoader)
    val value = task.run(taskId.toInt)

Task.scala

private[spark] abstract class Task[T](val stageId: Int, var partitionId: Int) extends Serializable {

  final def run(attemptId: Long): T = {
    runTask(context)
  }

ResultTask.scala

override def runTask(context: TaskContext): U = {
    // Deserialize the RDD and the func using the broadcast variables.
    val ser = SparkEnv.get.closureSerializer.newInstance()
    val (rdd, func) = ser.deserialize[(RDD[T], (TaskContext, Iterator[T]) => U)](
      ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)

    func(context, rdd.iterator(partition, context))
  }

调用的是rdd.iterator()

task根据stage来产生 DAGScheduler.scala

private def submitMissingTasks(stage: Stage, jobId: Int) {
    val tasks: Seq[Task[_]] = if (stage.isShuffleMap) {
      partitionsToCompute.map { id =>
        val locs = getPreferredLocs(stage.rdd, id)
        val part = stage.rdd.partitions(id)
        new ShuffleMapTask(stage.id, taskBinary, part, locs)
      }
    } else {
      val job = stage.resultOfJob.get
      partitionsToCompute.map { id =>
        val p: Int = job.partitions(id)
        val part = stage.rdd.partitions(p)
        val locs = getPreferredLocs(stage.rdd, p)
        new ResultTask(stage.id, taskBinary, part, locs, id)
      }
    }

map操作

RDD.scala

def map[U: ClassTag](f: T => U): RDD[U] = new MappedRDD(this, sc.clean(f))

MappedRDD.scala

class MappedRDD[U: ClassTag, T: ClassTag](prev: RDD[T], f: T => U)
  extends RDD[U](prev) {

  override def getPartitions: Array[Partition] = firstParent[T].partitions

  override def compute(split: Partition, context: TaskContext) =
    firstParent[T].iterator(split, context).map(f)
}

重点是实现方法compute和方法getPartitions

Iterator.scala的map方法

/** Creates a new iterator that maps all produced values of this iterator
   *  to new values using a transformation function.
   *
   *  @param f  the transformation function
   *  @return a new iterator which transforms every value produced by this
   *          iterator by applying the function `f` to it.
   *  @note   Reuse: $consumesAndProducesIterator
   */
  def map[B](f: A => B): Iterator[B] = new AbstractIterator[B] {
    def hasNext = self.hasNext
    def next() = f(self.next())
  }

results matching ""

    No results matching ""